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Patterns in a quasiconfocal optical parametric oscillator

M. Le Berre, E. Ressayre, and A. Tallet
Laboratoire de Photophysique Mole´culaire, Bâtiment 210, Universite´ Paris–Sud, 91405 Orsay Cedex, France

~Received 5 February 2003; published 16 June 2003!

The formation of transverse patterns in a triply resonant optical parametric oscillator is studied both numeri-
cally and analytically for a spherical cavity close to confocality. While the pump profile is Gaussian, the signal
and idler intensities may be made of many rings, either stationary or time dependent. The mode selection and
the time dependence are understood with the help of the linear stability analysis. It might explain observations
reported for a quasiconfocal cavity with a KTP crystal.
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I. INTRODUCTION

Transverse patterns were recently observed in a tr
resonant optical parametric oscillator~OPO!, realized with
Type II KTP crystals@1–3#. In the experiments of Vaupe
Maı̂tre, and Fabre@1,2#, the crystal was designed in such
way that the walk-off is compensated outside the crystal.
confocality, the emitted fields were the fundamental tra
verse electromagnetic mode (TEM00), but complex ring pat-
terns occurred when the cavity length is decreased below
mirror radius. These ring patterns were supposed to be
result of thermal effects and interpreted as a superpositio
a large number of Laguerre-Gauss modes. In the case
quasiconcentric cavity@2,3#, the transverse intensity of th
signal is distributed along thex axis, while the extraordinary
pump and idler beams are TEM00. In the setup of Suretet al.
@3# experiment, there is no compensation of the walk-o
The authors attributed their observation of high-ord
Hermite-Gauss modes to double refraction effects and
posed a model reproducing quite well the increase of
light spot number as the cavity approaches concentricity@3#.
Let us also quote a recent second-harmonic generation
periment, realized in a confocal cavity and without any wa
off, that reports the observation of light spots for both fie
@4#.

In the last ten years, transverse instabilities in OPO h
led to an impressive number of theoretical papers, wh
treated ideal conditions of plane mirrors and plane-wave
put pump profile, using the mean-field model@5# or the
propagation model@6#. A few treatments have considere
spherical mirrors and Gaussian beams@3,7–9#, either for a
singly resonant OPO@9# or for a triply resonant OPO fa
from confocality@3,8#.

This paper deals with a quasiconfocal triply reson
OPO, pumped by a Gaussian beam, as in the experime
setup of Vaupelet al., taking account of the propagation in
side the crystal and the radial dependence of the input b
profile. The numerical patterns displaying a large numbe
rings are interpreted with the help of a simple linear stabi
analysis. Around confocality, the high sensitivity of the rin
number to extremely small variations of the cavity length
explained via a selection rule that emphasizes the inter
between the signal or idler mistunings and the phase
induced by diffraction.
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II. MODEL

First let us recall the propagation model@6,11# in consid-
eration. It is composed of the reduced Maxwell equations
the propagation of field amplitudesa j ( j 5p,s,id) inside the
crystal, plus the boundary conditions. Here terms are ad
in the Maxwell equations, which take double refraction a
crystal heating into account. These equations are

]zap5 i¹2ap/2kp1 ie2 iDkzasa id1rp]xap

1~ ikpnpdn2ap!ap , ~1!

]zas5 i¹2as/2ks1 ie1 iDkzapa id* 1~ iksns]n2as!as ,
~2!

]za id5 i¹2a id/2kid1 ie1 iDkzapas* 1r id]xa id

1~ ik idniddn2as!a id . ~3!

In Eqs.~1!–~3!, kj is the longitudinal wave number,¹2 is
the transverse Laplacian, andDk is the phase mismatch
Dk5npkp2nsks2nidkid , wherenj is the linear refractive
index. The third term appearing in Eqs.~1! and~3! describes
the walk-off of the extraordinary pump and idler beam
Heating is due to light absorption by the crystal with abso
tion coefficient aj and gives rise to the temperatur
dependent refractive indexdn. That corresponds to the las
two terms of Eqs.~1!–~3!. The temperature-dependent r
fractive indexdn is a solution of the Laplace equation

¹p
2dn52J ~4!

with J}apuapu21as(uasu21ua idu2).
We present boundary conditions fromz1 to z2 for a linear

propagation inside the cavity of lengthL in order to empha-
size the role of the Fresnel diffraction inside the cavity,

a i~rW,z1 ,t !

5
2 ik i

2pCi
eiki ~z22z1!E drW8ei ~ki /2Ci !@Di ~r 821r 2!22rW•rW8#a i

3S rW8,z2 ,t2
z22z1

c D . ~5!
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Ci andDi are the~A,B,C,D! matrix elements@12#. For z15
2L/2 and z251L/2, these elementsCi52gi

2(gi
221)Leff,i

andDi52gi
221 depend on the transverse optical path len

Leff,i5L2,c(121/ni) andgi512Leff,i /R, whereR is the cur-
vature radius and,c is the crystal length. The boundary co
ditions at the cell entrance are deduced from those in
tween anyz1 andz2 with the appropriateCi andDi , step by
step from the crystal extremities to the mirrors and ba
That allows to treat the propagation inside the crystal and
reflection at the mirrors.

In a first step, simulations of Eqs.~1!–~5! have been per-
formed, using the known experimental parameters for
cavity and the crystal with a pump beam at 512 nm a
signal and idler beams at 1024 nm@1,10#. They are R
55 cm, ,c51 cm, np51.79, ns51.83, nid51.75, ap
51 m21, ap50.1 m21. Note that the longitudinal phas
mismatch vanishes for these refractive indices. The reflec
ity factors for the pump and the signal or idler arer p50.95
and r s50.993, respectively.

The numerical integration displays no signal, even
very high input, with the above absorption coefficien
When the ratio between the pump and signal absorption
efficients is kept equal to the experimental one, the OPO r
only for absorption coefficients about 1023, 1024 times
smaller than the given values. In that case, the therma
fects become negligible. The absence of OPO running, w
the experimental parameters are used, is presently not un
stood. The introduction of a nonvanishing longitudinal pha
mismatch might give rise to the emission of signal or id
beams with the experimental absorption coefficients.

On the other hand, the simulations show that the tra
verse shape of the signal or idler patterns is very sensitiv
the cavity mistunings. Indeed, in some cases, the three be
look like TEM00, whatever the cavity length might be. Fo
some other mistunings, the signal and idler have a comp
transverse intensity distribution, very sensitive to ti
changes of the cavity length. These patterns can display
cylindrical symmetry, or a higher-order symmetry O2n , n
>1, they can also be distributed along thex axis and look
like Hermite-Gauss modes.

With the aim of understanding the formation of rings, t
situation without walk-off and temperature effects is cons
ered, giving rise to the usual reduced Maxwell equatio
keeping the first two terms in the right-hand member of E
~1!–~3!.

III. LINEAR STABILITY ANALYSIS

The formation of patterns for signal and idler beams
studied close to the threshold when the input beam ha
Gaussian profile. A linear stability analysis is derived th
applies for any cavity length and any field mistuning. For t
sake of simplicity, the three refractive indices are tak
equal.

Expanding the three field amplitudes on the Laguer
Gauss modes,a j5Āj1SeltdAj

l ,mc l ,m with udAs,id
l ,m u!1 and

c l ,m5al ,me2r 2
r m exp(6imw)Ll

m(2r2), wherer is scaled to the
signal-idler waist andal ,m is the normalization factor, the
06620
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threshold characteristics are determined for an in
a ine2(r /win)2

of width win .
Using boundary condition~5!, the stationary pump ampli

tude Āp(0) is, below threshold, equal to

Āp~0!5
a in

12r p
2ei ~up1f00! ~6!

for a confocal cavity, whateverwin might be. In Eq.~6!, up
accounts for the longitudinal frequency mistuning and
phase shift induced by the mirrors, andf00 is the phase lag
due to diffraction after a round trip inside the spherical cav
for the TEM00 mode, also named the Gouy phase@12#, or in
other words, the scaled transverse mode spacing,f005
24 tan21ALeff /(2R2Leff). Assuming a quasiconfocal cavity
the cavity length is defined asL5R2dL, so that

f0052~p2dg! ~7!

with udgu!p.
Only a mistuningup of orderp will provide a large gain

of the input beam and, consequently, a small enough in
amplitude in order to reach the OPO running. This can
easily made by changing very slightly the length of the ca
ity.

It only exists approximate solutions of the linear stabil
analysis for an input depending on the transverse varia
@8,9#. The treatment that we propose is rough, but has
advantage to give rise to an easily tractable character
equation.

With udAj
l ,mu!1 andAs,id

l ,m 50, the lowest-order solution

for the pump isAp(0)e2(r /win)2
inside the crystal. Then, de

coupling the effect of diffraction and nonlinearity in Eqs.~2!
and ~3!, the lowest-order term of the Mac-Laurin expansi
for the signal or idler solutions, at the exit of the cryst
gives rise to an infinite set of coupled equations
$dAs

l ,m% and $(dAid
q,m)* %, via the integral Jl ,q,m

5*dr2e2(r /win)2
C l ,mCq,m* . This reduces to only two equa

tions if the input is a plane wave; then assuming that
input beam widthwin is large compared to the signal or idle
eigenmodes waist, the overlappingJl ,q,m between different
Gauss-Laguerre modes,lÞq, is neglected. Introducing the
boundary conditions, the characteristic equation for the co
plex eigenvaluel is derived:

e2ltR1r s
4ei ~us2u id!@124Jl ,l ,m

2 Ap
2~0!#

22r s
2eltR1 i ~u2u id!/2 cos@f lm1~us1u id!/2#50.

~8!

In Eq. ~8!, f lm is the Gouy phase shift for the modeC l ,m ,

f lm5f00~2l 1m11!, ~9!

us(u id) is the mistuning for the signal~idler!, andtR denotes
the round-trip time. The factor 4 beyondJl ,l ,m

2 arises because
the light goes twice through the crystal at each round trip
a Fabry-Pe´rot setup.
7-2
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Equation ~8! generalizes the characteristic equation o
tained in case of a planar cavity when using the Fou
modes @6#. It selects the signal or idler Laguerre-Gau
modes that might be amplified from noise above the thre
old defined by Re(l)50. The bifurcation is periodic, with
period T54ptR /(us2u id) and the threshold input ampli
tude inside the cavity is from Eqs.~6! and ~8!:

a lm
th ~us 1u id!5

1

2r s
2Jl ,l ,m

u12r p
2ei ~up1f00!u$11r s

4

22r s
2 cos@f lm1~us1u id!/2#%1/2. ~10!

The mode selection depends onus1u id and on the trans-
verse spacingf00. The selected integersl and m are those
that make equal to unity the quantityQl ,m ,

Ql ,m5cos@~2l 1m11!~p2dg!2~us1u id!/2#. ~11!

Later on, the pump amplitude is assumed to be a Gaus
of width twice the TEM00 pump cavity mode. Actually the
mistunings are not experimentally accessible@10#. Then the
pump mistuning is assumed to compensate the Gouy p
shift experienced by the beam,up52f00 that makes the
pump beam in exact resonance with a cavity mode, and
signal and idler mistunings will be varied.

Let us first assume that the signal and idler are also
resonance with a cavity mode, i.e.,us,id52f00. In that
case, Eq.~10! displays nothing but the threshold amplitud
given by Yariv and Louisell@13#. It predicts a stationary
bifurcation and the occurrence of the fundamental mo
TEM00, whateverdg might be. Modes of higher order hav
to satisfy@dg(2l 1m)2pm#.2kp, i.e., l @1; they have a
threshold proportional toAl and an instability domain
shrinking asl increases~for m/ l !1).

Let us now consider a nontrivial case where the signa
off resonance, i.e.,us50, while the idler is on resonance
u id5f00. The bifurcation is periodic with a period equal
four timestR , and quantity~11! becomes

Ql ,m5cos@~2l 1m11/2!dg2~2m11!p/2#, ~12!

leading to the selection rule

dg
~k!/p5

112m14k

112m14l
. ~13!

Plots ofa lm
th as a function ofdg display a very large numbe

of marginal stability curves for different set (l ,m). This is
illustrated in Fig. 1 for 0.175<dg<0.19 that corresponds t
0.0875<12Leff /R<0.095, for 0< l<40 and 0<m<1. For
any other even~odd! azimuthal numberm, the domains can
be deduced from those drawn form50 (m51) because all
the modes (l ,m) satisfying the condition (2l 1m)5const
have their minimum located at the samedg . Coincidences
happen also for very differentl 12m. Assume dg /p
51/(4p11), then this happens for modes (p1kp/dg,0)
and (3p1kp/dg,1) with k50,1,2,..., as predicted by Eq
06620
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~13!. This is illustrated in Fig. 1 atdg50.185, where insta-
bility frontiers corresponding to~4,0!, ~21,0!, ~38,0!, ~12,1!,
~29,1! are drawn.

For a given cavity length, the selected modes, with
same azimuthal number, have radial number differing at le
from 4p11 (p>1), so that their overlapping integra
Jp,5p11,m is negligible, justifying asposteriori our perturba-
tion approach.

Let us also point out that the mode selection proces
extremely sensitive to a very small variation of the effecti
length, as seen in Fig. 1. This feature, occurring here fo
triply resonant cavity, was already reported in experime
related to a single beam cavity@14#.

IV. NUMERICAL RESULTS

Let us briefly consider the caseus,id52f00. As pre-
dicted by selection rule~11!, the signal and the idler are
TEM00 modes for anydg , but they appear for an input pum
amplitude, approximately twice the theoretical thresho
a00

min , deduced from Eq.~10! with J0,0,054/5,

a00
min[a00

th~22f00!;1023. ~14!

Furthermore, when the input is increased, the signal and i
remain TEM00 modes, while the pump amplitude profile di
plays nonlinear effects.

Simulations have been performed withu id50 andus5
2f00, for different effective lengths, changingdL or the
refractive index. At confocality,dg50, the TEM00 mode oc-
curs as predicted by Eq.~12!, but for an input amplitude
slightly smaller than the threshold amplitude given by E
~10!, a00

num573102250.8a00
th(2f00). For any dgÞ0, the

input amplitude at which a signal occurs is much larger th
the threshold amplitude given by Eq.~10!, a lm

th (2f00)
5Ala00

min (m/l!1).
From selection rule~13! illustrated in Fig. 1, the trans

verse structures are expected to be generally a superpos
of modes. Actually, the numerical patterns are successf
interpreted with the help of the linear stability analysis p

FIG. 1. Plots of the threshold input amplitude for Gaus
Laguerre modes, as a function ofdg5p2f00. Dotted lines are the
stability boundaries atdg50.176 for ~40,0!, dg50.18 for ~39,0!,
anddg50.185 for~38,0!. Curves centered atdg50.185 correspond
to ~4,0!, ~12,1!, ~21,0!, ~29,1!, and~38,0!, from the broadest to the
most narrow domain. The black line atdg;0.177 is the boundary
for ~22,0! and the other atdg;0.179 is the boundary for~30,1!.
7-3
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dictions. Aftern round trips in the cavity, any superpositio
of modes becomesSal ,m exp(ifl,mntR)cl,m, so that it is usu-
ally time dependent, except if the modes have the same G
phase~mod 2p!. In that case the modes are said self-lock
@15#, and the pattern intensity is stationary.

Such a self-locking, predicted by selection rule~13! has
been numerically obtained, for instance, atdg50.185. Close
to the threshold, locking of modes~4,0! and ~3,2! occurs,
while, for a higher input, modes~4,0!, ~21,0!, ~38,0! plus
those associated withm52 superpose, giving rise to a O4
symmetry pattern with 38 rings@16#.

Pure mode~5,0! has been numerically found at the valu
of dg.0.15 as given by Eq.~13!, for an input about eight
timesa5,0

th (2f00). A mixing of ~5,0! and~4,0! has been ob-
tained atdg50.152, for a higher input amplitude, when the
marginal instability domains overlap. The intensity is pe
odic, with periodT;20tR , the signal pattern oscillating be
tween five rings with a central spot and a doughnut with t
or three adjacent rings. This pattern is well reproduced by
superposition

I ~ntR!;u&c5,01e2idgntRc4,0u2, ~15!

where the period is inversely proportional to the Gouy ph
difference of the two modes, i.e.,T/tR5p/dg;20, as nu-
merically found. The mean intensity deduced from Eq.~15!
is reported in Fig. 2~b! and agrees well with the numerica
one shown in Fig. 2~a!. This superposition concerns two a
jacent longitudinal modes. Indeed, in a quasiconfocal se
the transverse frequency spacing between adjacent r
modes is almost equal to the longitudinal mode freque
spacing @17#. Let us point out that the rings are slight
blurred because of the phase mismatch between the r
oscillations of the two modes.

For dg50.18, where the two modes~39,0! and~38,2!, are
unstable as seen in Fig. 1, a 39-ring intensity pattern occ
for an input about five timesa39,0

th (2f00). It is periodic in
time, with the periodT/tR;p/dg , the pattern being locate
either in the upper half-plane or in the lower half-plane a
vice versa for the idler, while the pump looks like a TEM00.
The mean-time intensity over a period, shown in Fig. 3 d
plays a bright center and 39 well-shaped rings; there are
bright domains at right angles, but without the O4 symmetry.
Some superposition of the modes~39,0! and ~38,2! can re-

FIG. 2. ~a! Far field of the time-averaged transverse intensity
the signal fordg50.152. ~b! Time-averaged transverse intensi
given in Eq.~15!.
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produce the O4 symmetry breaking, due to crossed term pr
portional to cos(2w) but its intensity is stationary. Therefore
the pattern in Fig. 3 can be understood as the time averag
a superposition of the modes~39,0! and~38,2! with two sets
of modes~39,2! and ~40,0!, unstable aboutdg50.176, and
~37,2! and~38,0!, unstable aboutdg50.185, which gives rise
to the observed period.

All our results obtained by changing onlydL, making the
refraction index equal to 1, agree perfectly with selecti
rule ~13!, in the sense that the modes, which numerica
occur, are predicted to be unstable. But, when the refrac
index is about the experimental values, some unexpected
tern may occur. Choosingni52 anddL50, i.e.,dg50.2, a
12-ring intensity pattern occurs, displaying the angular f
quencydg /tR for an input about ten timesa12,1

th (2f00). The
signal pattern can be interpreted as the superposition of
two modes~12,1! and ~12,0!,

I ~ntR!5u 1
3 c12,01eidgntR cos~w1w0!c12,1u2. ~16!

The mean intensity deduced from Eq.~16! is shown in Fig.
4~b! for w050; it displays the O2 symmetry and agrees with
the numerical one in Fig. 4~a!. Nevertheless, the mode
~12,1! and~12,0! are unexpected because their marginal s
bility curve minima are located atdg50.185 and 0.25, re-
spectively. Forni@1, nonlinear resonance effects may le
to a shift of the marginal stability curves@18#.

For small dg , where the density of unstable modes i
creases a lot, more than two modes generally superpose
different Gouy phases; the patterns have always a well
fined number of rings, but their intensities become quasip
odic or chaotic.

Simulations have been also performed for other values
us,id . For us,id50, they can display stationary pump, sign
and idler beams, distributed on thex axis, while there is no

f

FIG. 3. Far field of the time-averaged transverse intensity of
signal fordg50.18.
7-4
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walk-off @4#. They would be explained by expanding the s
lutions on the basis of Hermite-Gauss modes. But for a
other us,id , such as 0!(us1u id)/2!p, ring patterns have
been obtained, which can be explained by the help
Eq. ~11!.

V. CONCLUSION

In conclusion, a characteristic equation for the occurre
of a signal has been derived for a triply resonant OPO of t
I with a spherical cavity, pumped by a Gaussian beam
has been carefully investigated for a quasiconfocal se
The linear stability analysis displays the key role of the Go

FIG. 4. ~a! Far field of the time-averaged transverse intensity
the signal fordg50.2. ~b! Time-averaged transverse intensity giv
in Eq. ~16!.
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phase and of the mistunings for the pattern formation a
captures the main numerical results. At confocality, for a
input beam amplitude with Gaussian profile, the numeri
signal or idler is the TEM00 mode, while other tranverse
modes might occur, see Eq.~11! for dg50. A small shift of
the effective length removes the quasidegeneracy betw
modes, and with appropriate signal and idler mistunings,
TEM00 mode is no longer the most unstable mode, as c
firmed by simulations. The number of rings of the numeric
patterns agree with the prediction of a strong sensitivity t
small change of the effective cavity length. The many-ri
patterns of the Vaupel, Maıˆtre, and Fabre experiment@1# oc-
cur for the same range of cavity deviationsdL from confo-
cality and might be explained by similar selection rules. A
tually, the walk off should be introduced in order t
differentiate the idler from the signal. This will lead to ne
selection rules for the signal and idler modes.
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