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Patterns in a quasiconfocal optical parametric oscillator
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The formation of transverse patterns in a triply resonant optical parametric oscillator is studied both numeri-
cally and analytically for a spherical cavity close to confocality. While the pump profile is Gaussian, the signal
and idler intensities may be made of many rings, either stationary or time dependent. The mode selection and
the time dependence are understood with the help of the linear stability analysis. It might explain observations
reported for a quasiconfocal cavity with a KTP crystal.

DOI: 10.1103/PhysReVvE.67.066207 PACS nunther89.75.Kd, 42.65.Sf, 42.60.Da, 42.60.Jf

I. INTRODUCTION 1. MODEL

First let us recall the propagation modél11] in consid-
ation. It is composed of the reduced Maxwell equations for
) the propagation of field amplitudesg (j=p,s,id) inside the
Type Il KTP crystals[1-3]. In the experiments of Vaupel, ¢ ysial plus the boundary conditions. Here terms are added

Maitre, and Fabr¢1,2], the crystal was designed in such an’the Maxwell equations, which take double refraction and
way that the walk-off is compensated outside the crystal. Agrystal heating into account. These equations are
confocality, the emitted fields were the fundamental trans-

Transverse patterns were recently observed in a triplyér
resonant optical parametric oscillat@®PO), realized with

verse electromagnetic mode (TE§, but complex ring pat- &Zap=inap/2kp+ie’iAkZaSaiderpaxap
terns occurred when the cavity length is decreased below the _
mirror radius. These ring patterns were supposed to be the +(ikpnpon—ay) ey, (1)

result of thermal effects and interpreted as a superposition of
a large number of Laguerre-Gauss modes. In the case of a azas=iV2a5/2k5+ie“AkZapai’;jJr(iksnsan—as)as,

quasiconcentric cavity2,3], the transverse intensity of the 2
signal is distributed along theaxis, while the extraordinary

pump anq idler beams are TEM In the setup of Suredt al. F,0iq=1V2ajgl2Kiq+ ie“AkZapa;‘ + piqdxig

[3] experiment, there is no compensation of the walk-off. )

The authors attributed their observation of high-order + (ikighig6n—as) aig - ©)

Hermite-Gauss modes to double refraction effects and pro-

posed a model reproducing quite well the increase of the In Egs.(1)—(3), k; is the longitudinal wave numbe¥,? is
light spot number as the cavity approaches concentrigity ~the transverse Laplacian, antk is the phase mismatch,
Let us also quote a recent second-harmonic generation efK=npk,—nks—njgkiq, wheren; is the linear refractive
periment, realized in a confocal cavity and without any walk-index. The third term appearing in Ed4) and(3) describes
off, that reports the observation of light spots for both fieldsth® walk-off of the extraordinary pump and idler beams.
[4]. Heating is due to light absorption by the crystal with absorp-

In the last ten years, transverse instabilities in OPO hav&©" cgefﬂmefnt 8 ar_ldd glveshrlse to the dtempehratlure-
led to an impressive number of theoretical papers, Whicﬁmpen ent refractive indesn. That corresponds to the last

treated ideal conditions of plane mirrors and plane-wave iniWo terms of Eqs(1)—(3). The temperature-dependent re-

put pump profile, using the mean-field mod&l] or the fractive indexén is a solution of the Laplace equation
propagation mode[6]. A few treatments have considered

spherical mirrors and Gaussian beaf8s’—9, either for a Vf)ﬁn: —3J 4)
singly resonant OP(Q9] or for a triply resonant OPO far
from confocality[3,8]. with Jocag| arp|®+ag(| ag >+ | aig|?).

This paper deals with a quasiconfocal triply resonant We present boundary conditions framto z, for a linear
OPO, pumped by a Gaussian beam, as in the experimentatopagation inside the cavity of lengthin order to empha-
setup of Vaupekt al, taking account of the propagation in- size the role of the Fresnel diffraction inside the cavity,
side the crystal and the radial dependence of the input beam
profile. The numerical patterns displaying a large number of (7,2, ,t)
rings are interpreted with the help of a simple linear stability

analysis. Around confocality, the .high sensitivity. of the ring _ —ik; okiz-20) [ gt el (/2SI (r 2417 ~27- 7]
number to extremely small variations of the cavity length is 27C; !
explained via a selection rule that emphasizes the interplay

between the signal or idler mistunings and the phase lags > LT

) . . X | F',zy,t 5)
induced by diffraction. c
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C; andD; are the(A,B,C,D matrix element§12]. Forz,= threshold characteristics are determined for an input
—L/2 andz,=+L/2, these element€;=2g%(9>~1)Ler;  apne )" of width w;, .
andD; =29i2— 1 depend on the transverse optical path length Using boundary conditiofb), the stationary pump ampli-
Leﬂyi:L_fc(l_llni) andg,=1— L e /R, whereR is the cur- tudeAp(O) is, below threshold, equal to
vature radius and. is the crystal length. The boundary con-
ditions at the cell entrance are deduced from those in be- — Qin
tween anyz, andz, with the appropriat€; andD;, step by Ap(0)= 1— 1269 * b00 6)
step from the crystal extremities to the mirrors and back. P
That allows to treat the propagation inside the crystal and theyr 3 confocal cavity, whatevew;, might be. In Eq(6), 6,
reflection at the mirrors. accounts for the longitudinal frequency mistuning and the

In a first step, simulations of Eqél)—(5) have been per- phase shift induced by the mirrors, arigy is the phase lag
formed, using the known experimental parameters for thejye to diffraction after a round trip inside the spherical cavity
cavity and the crystal with a pump beam at 512 nm andor the TEM,, mode, also named the Gouy ph4&é&], or in
signal and idler beams at 1024 nfi,10. They areR  other words, the scaled transverse mode spacibig=
=scm, {c=1lcm, ny,=1.79, ns=183, ng=1.75 a,  _4tan /[ 4/(2R—Ley). Assuming a quasiconfocal cavity,
=1m% a,=0.1m *. Note that the longitudinal phase the cavity length is defined ds=R— L, so that
mismatch vanishes for these refractive indices. The reflectiv-
ity factors for the pump and the signal or idler arg=0.95 $oo=— (7~ 8) (7)
andr¢=0.993, respectively.

The numerical integration displays no signal, even forwith | §g|<r.
very high input, with the above absorption coefficients. Only a mistuningé,, of order 7 will provide a large gain
When the ratio between the pump and signal absorption caef the input beam and, consequently, a small enough input
efficients is kept equal to the experimental one, the OPO runamplitude in order to reach the OPO running. This can be
only for absorption coefficients about 1) 10 times easily made by changing very slightly the length of the cav-
smaller than the given values. In that case, the thermal eity.
fects become negligible. The absence of OPO running, when It only exists approximate solutions of the linear stability
the experimental parameters are used, is presently not undexnalysis for an input depending on the transverse variables
stood. The introduction of a nonvanishing longitudinal phasg8,9]. The treatment that we propose is rough, but has an
mismatch might give rise to the emission of signal or idleradvantage to give rise to an easily tractable characteristic
beams with the experimental absorption coefficients. equation.

On the other hand, the simulations show that the trans- \jith |5A}vm|<1 and@zo, the lowest-order solution
verse shape of the signal or idler patterns is very sensitive t ’
the cavity mistunings. Indeed, in some cases, the three bea

look like TEMQO‘ whatever th? cavity Ie_ngth might be. For and (3), the lowest-order term of the Mac-Laurin expansion
some other mistunings, the signal and idler have a comple

. . O i P'®%r the signal or idler solutions, at the exit of the crystal
transverse intensity distribution, very sensitive to tiny 9 ’ ystal,

; . ives rise to an infinite set of coupled equations for
changes of the cavity length. These patterns can display t I.m q,my * . . ~
e . oAy and {(SAGT)*}, via the integral J gm
cylindrical symmetry, or a higher-order symmetry,Q n 2 (1w )2 . ) A
=1, they can also be distributed along thexis and look = Jdree """, W .. This reduces to only two equa-
like Hermite-Gauss modes. tions if the input is a plane wave; then assuming that the
With the aim of understanding the formation of rings, the iNPut beam widthw;, is large compared to the signal or idler
situation without walk-off and temperature effects is consid-€igenmodes waist, the overlappidg,m between different
ered, giving rise to the usual reduced Maxwell equationsGauss-Laguerre modek#q, is neglected. Introducing the

keeping the first two terms in the right-hand member of EqsPoundary conditions, the characteristic equation for the com-
(1)-(3). plex eigenvaluex is derived:

or the pump i A (0)e~ "Win)? inside the crystal. Then, de-
for th A, (0)e™ (Min)
rBgupling the effect of diffraction and nonlinearity in Eq2)

e? Rt riel (sl 1-437 AZ(0)]
Ill. LINEAR STABILITY ANALYSIS )
_ _ _ _ —2r2eRTI0 002 0od b, + (B + 6,)/2]=0.
The formation of patterns for signal and idler beams is
studied close to the threshold when the input beam has a 8
Gaussian profile. A linear stability analysis is derived that
applies for any cavity length and any field mistuning. For the
sake of simplicity, the three refractive indices are taken
equal.

Expanding the_three )li|eld| 2mpl|tut.jes onl ;he Laguerre-es( 0,4) is the mistuning for the signaidler), and g denotes
Gauss modesy;=A;+3.€ 'SA; ™Y m with [9ASTy[<1 and  the round-trip time. The factor 4 beyoRd, ,, arises because
Y m=ame " rMexpEime)L(2r?), wherer is scaled to the  the light goes twice through the crystal at each round trip for
signal-idler waist and, , is the normalization factor, the a Fabry-Peot setup.

In Eq. (8), ¢ is the Gouy phase shift for the mode, ,,

bim= o2l + m+1), (€)
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\i:

Equation (8) generalizes the characteristic equation ob-
tained in case of a planar cavity when using the Fourier
modes[6]. It selects the signal or idler Laguerre-Gauss
modes that might be amplified from noise above the thresh-
old defined by Re()=0. The bifurcation is periodic, with
period T=477r/(6s— 0;4) and the threshold input ampli-
tude inside the cavity is from Eq¢6) and (8):

put amplitude (arb. units)

S In

th
am(0s + 0ig) = 25 s 175 0.18 o 0.185 0.19
sVl lm T—

00
—2r2c0§ i+ (0s+ big) 121112 (10)

|1—r2e %" 00| {1+ :

FIG. 1. Plots of the threshold input amplitude for Gauss-
] Laguerre modes, as a function &f= 7— ¢qo. Dotted lines are the
The mode selection depends @g+ 6y and on the trans-  gapility boundaries ab,=0.176 for (40,0, 5,=0.18 for (39,0,
verse spacingbo,. The selected integetsand m are those  and 8,=0.185 for(38,0. Curves centered a,=0.185 correspond
that make equal to unity the quanti€y p,, to (4,0, (12,1, (21,0, (29,1, and(38,0, from the broadest to the
most narrow domain. The black line 8~0.177 is the boundary
Qi m=cog (2l+m+1)(7— 5y —(0s+ 0;g)/2]. (11)  for (22,0 and the other ab,~0.179 is the boundary fdi30,1).

Later on, the pump amplitude is assumed to be a Gaussidd3). This is illustrated in Fig. 1 ab,=0.185, where insta-
of width twice the TEM, pump cavity mode. Actually the bility frontiers corresponding t¢4,0), (21,0, (38,0, (12,1,
mistunings are not experimentally accessidlé]. Then the (29,1 are drawn.
pump mistuning is assumed to compensate the Gouy phase For a given cavity length, the selected modes, with the
shift experienced by the bean,= — ¢, that makes the same azimuthal number, have radial number differing at least

pump beam in exact resonance with a cavity mode, and thisom 4p+1 (p=1), so that their overlapping integral

signal and idler mistunings will be varied. Jp,5p+1,m is negligible, justifying agosterioriour perturba-
Let us first assume that the signal and idler are also irion approach.
resonance with a cavity mode, i.fgiq=— ¢oo. In that Let us also point out that the mode selection process is

case, Eq(10) displays nothing but the threshold amplitude extremely sensitive to a very small variation of the effective
given by Yariv and Louisel[13]. It predicts a stationary length, as seen in Fig. 1. This feature, occurring here for a
bifurcation and the occurrence of the fundamental modédriply resonant cavity, was already reported in experiments
TEMyo, whateversy, might be. Modes of higher order have related to a single beam cavifg4].

to satisfy[ 54(2] + m) —m]=2km, i.e., |>1; they have a

threshold proportional toyl and an instability domain IV. NUMERICAL RESULTS

shrinking adl increasegfor m/l1<1).

Let us now consider a nontrivial case where the signal i
off resonance, i.e.f;=0, while the idler is on resonance,
0,4= ¢oo- The bifurcation is periodic with a period equal to
four times7g, and quantity(11) becomes

s Let us briefly consider the casejq=— ¢go. AS pre-
dicted by selection rulg1l), the signal and the idler are
TEMq, modes for any, , but they appear for an input pump
amplitude, approximately twice the theoretical threshold
agy', deduced from Eq(10) with Jg o 0=4/5,

Qi m=cog (2l +m+1/2)6;— (2m+1)w/2], (12 = o 2.0 ~10°2. 14
leading to the selection rule Furthermore, when the input is increased, the signal and idler
remain TEM,g modes, while the pump amplitude profile dis-
Sy LM (13) plays nonlinear effects.
9 1+2m+4l"

Simulations have been performed withy=0 and ;=
— ¢qo, for different effective lengths, changingL or the
Plots ofa|) as a function of, display a very large number refractive index. At confocalitygy =0, the TEMy, mode oc-
of marginal stability curves for different set, (). This is ~ curs as predicted by Ed12), but for an input amplitude
illustrated in Fig. 1 for 0.175 5,<0.19 that corresponds to Slightly smaller than the threshold amplitude given by Eq.
0.0875<1— L /R<0.095, for 0<I<40 and G=m<1. For  (10), af§™=7x10 2=0.8afy— o). For any §;#0, the
any other everfodd azimuthal numbem, the domains can input amplitude at which a signal occurs is much larger than
be deduced from those drawn for=0 (m=1) because all the threshold amplitude given by Edq10), a|t21(—¢00)
the modes I,m) satisfying the condition (2+m)=const = \lafy" (M/I<1).
have their minimum located at the sarig. Coincidences From selection rulg13) illustrated in Fig. 1, the trans-
happen also for very different+2m. Assume §,/7  verse structures are expected to be generally a superposition
=1/(4p+1), then this happens for modep+kw/5y,0) of modes. Actually, the numerical patterns are successfully
and (+km/dy,1) with k=0,1,2,..., as predicted by Eq. interpreted with the help of the linear stability analysis pre-
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(@)

FIG. 2. (a) Far field of the time-averaged transverse intensity of
the signal for §;=0.152. (b) Time-averaged transverse intensity
given in Eqg.(15).

dictions. Aftern round trips in the cavity, any superposition
of modes becomeX a, ., exp( ¢ N7R) ¥ m, SO that it is usu-
ally time dependent, except if the modes have the same Gouy
phase(mod 2r). In that case the modes are said self-locked
[15], and the pattern intensity is stationary.

Such a self-locking, predicted by selection riks) has FIG. 3. Far field of the time-averaged transverse intensity of the
been numerically obtained, for instance dgt=0.185. Close  sjgnal for 5,=0.18.
to the threshold, locking of mode,0) and (3,2) occurs,
while, for a higher input, mode&4,0), (21,0, (38,0 plus
those associated witm=2 superpose, giving rise to a,O

produce the @ symmetry breaking, due to crossed term pro-

. ; portional to cos(2) but its intensity is stationary. Therefore,

symmetry pattern with 38 nng{SLG]._ the pattern in Fig. 3 can be understood as the time average of
Pure mode(S,O)_ has been numerically _found at the v_aluesa superposition of the modé€39,0 and (38,2 with two sets

qf 59:8{15 as given _b)_/ Eq(13), for an input about eight of modes(39,2 and (40,0, unstable about,=0.176, and

times a5l ~ bod)- A mixing of (520) and(4,0_) has been Ob', (37,2 and (38,0, unstable abouf;=0.185, which gives rise

tained até,= 0.152, for a higher input amplitude, when their 4 the observed period.

marginal instability domains overlap. The intensity is peri- Al our results obtained by changing ond, making the

odic, with periodT ~207g, the signal pattern oscillating be- refraction index equal to 1, agree perfectly with selection
tween five rings with a central spot and a doughnut with tWor e (13), in the sense that the modes, which numerically

or three adjacent rings. This pattern is well reproduced by thgccyr, are predicted to be unstable. But, when the refraction
superposition index is about the experimental values, some unexpected pat-
- 2i 5,07, 2 tern may occur. Choosing,=2 andéL=0, i.e.,5,=0.2, a
I(NTR)~ V245 ot €90 Ry, |, (15) 12-ring intensity pattern occurs, displaying thegangular fre-
where the period is inversely proportional to the Gouy phaséluencyd,/ 7 for an input about ten times}y (— ¢oo). The
difference of the two modes, i.€T/7g=m/5,~ 20, as nu- signal pattern can be interpreted as the superposition of the
merically found. The mean intensity deduced from Edp)  two modes(12,1) and(12,0),
is reported in Fig. &) and agrees well with the numerical '
one shown in Fig. @). This superposition concerns two ad- l(N7R) =3 Y120+ €"%0"RCOL o+ Qo) 124 (16)
jacent longitudinal modes. Indeed, in a quasiconfocal setup,
the transverse frequency spacing between adjacent radiihe mean intensity deduced from HG6) is shown in Fig.
modes is almost equal to the longitudinal mode frequencyi(b) for ¢,=0; it displays the @ symmetry and agrees with
spacing[17]. Let us point out that the rings are slightly the numerical one in Fig. (4). Nevertheless, the modes
blurred because of the phase mismatch between the radigl2,1) and (12,0 are unexpected because their marginal sta-
oscillations of the two modes. bility curve minima are located af,=0.185 and 0.25, re-
For 5,=0.18, where the two modé&89,0 and(38,2, are  spectively. Fom;>1, nonlinear resonance effects may lead
unstable as seen in Fig. 1, a 39-ring intensity pattern occurse a shift of the marginal stability curve48.
for an input about five timeszgg’()(—¢oo). It is periodic in For small 65, where the density of unstable modes in-
time, with the periodl/ 7~/ 4, the pattern being located creases a lot, more than two modes generally superpose with
either in the upper half-plane or in the lower half-plane anddifferent Gouy phases; the patterns have always a well de-
vice versa for the idler, while the pump looks like a TEgM  fined number of rings, but their intensities become quasiperi-
The mean-time intensity over a period, shown in Fig. 3 dis-odic or chaotic.
plays a bright center and 39 well-shaped rings; there are four Simulations have been also performed for other values of
bright domains at right angles, but without thg §ymmetry.  65;q. For 65;4=0, they can display stationary pump, signal
Some superposition of the modé9,0 and (38,2 can re- and idler beams, distributed on tikeaxis, while there is no
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phase and of the mistunings for the pattern formation and
captures the main numerical results. At confocality, for any
input beam amplitude with Gaussian profile, the numerical
signal or idler is the TEM, mode, while other tranverse
modes might occur, see E(L1) for §,=0. A small shift of

the effective length removes the quasidegeneracy between
modes, and with appropriate signal and idler mistunings, the
TEMgo mode is no longer the most unstable mode, as con-
firmed by simulations. The number of rings of the numerical
patterns agree with the prediction of a strong sensitivity to a
small change of the effective cavity length. The many-ring
FIG. 4. (a) Far field of the time-averaged transverse intensity ofPatterns of the Vaupel, Mae, and Fabre experimeft] oc-

the signal fors,=0.2. (b) Time-averaged transverse intensity given cur. for the s.ame range O_f cavity Qeyiatioﬁs frqm confo-
in Eq. (16). cality and might be explained by similar selection rules. Ac-

tually, the walk off should be introduced in order to
_differentiate the idler from the signal. This will lead to new
)§election rules for the signal and idler modes.

walk-off [4]. They would be explained by expanding the so
lutions on the basis of Hermite-Gauss modes. But for an
other 65,4, such as €& (6s+ 0q)/2<, ring patterns have
EZ??ll())_btamed, which can be explained by the help of ACKNOWLEDGMENTS
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V. CONCLUSION
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